Curriculum Vitae

Personal Information

Dr. Debasis Ghosh, PhD, IIT Kharagpur, India

Date of birth: 01/04/1988 Nationality: Indian ORCID ID: 0000-0002-2167-3656 Scopus ID: 56370611300 https://www.scopus.com/authid/detail.uri?authorId=56370611300 E-mail: g.debasis@jainuniversity.ac.in, debasisghosh88@gmail.com Mob: +91 8972928611; 010-7671-9832

Permanent Address:

Vill & Post: Panchgeria, Dist-Paschim Medinipur, PIN-721156; West Bengal

Current Position:

Associate Professor (since March 2024-till date) Centre for Nano and Material Sciences, Jain University, Bangalore **Responsibility**: Research & Teaching (M.Sc. Chemistry) https://cnms.jainuniversity.ac.in/Faculty-Debasis.htm https://scholar.google.com/citations?user=Ap2X6wUAAAAJ&hl=en

Professional Experience:

- July 2017-February 2024- Assistant Professor, Centre for Nano & Material Science, JAIN University.
- <u>April 2016-June 2017-</u> Postdoctoral fellow in Chemical Engineering, University of Waterloo, Canada.
- January 2015-December 2015- Postdoctoral fellow at KAIST, South Korea.

Education:

Degree	University /	Thesis title/Specialization	Duration	Class
PhD	Materials Science Centre, IIT Kharagpur	Development of graphene, carbon nanotube and carbon fiber-based hybrid material for supercapacitor application	2011-2014	NA
M.Sc	Vidyasagar University	Chemistry	2008-2010	1 st (79.58%)
B.Sc	Vidyasagar University	Chemistry (Honours)	2005-2008	1 st (65.25%)
H.S	W.B.C.H.S.E	Science	2003-2005	1 st (74.7%)
M.P	W.B.B.S.E	General	2003	1 st (88.38%)

Achievements:

- Awarded prestigious 'Brain-Pool Invited Scientist' fellowship from NRF Korea (2022).
- Early career research grant from SERB (2019).
- Received Postdoctoral fellowship from Natural Sciences and Engineering Research Council of Canada, 2016.
- Received Postdoctoral fellowship from Institute for Basic Science, South Korea, 2015
- UGC-CSIR (NET-JRF)-Chemical Sciences awarded by CSIR, Government of India, New Delhi, India from January 2011
- ➢ GATE qualified in Chemical science: 2010

Research expertise/experience

I have been working on the development of functional nanomaterials, nanocomposites and electrolytes for electrochemical energy storage and conversion for the past 12 years, including my PhD work on graphene-based materials production, processing, and incorporation into electrochemical energy storage devices such as supercapacitors.

https://cnms.jainuniversity.ac.in/Faculty-Debasis-publications.htm https://scholar.google.co.in/citations?hl=en&user=Ap2X6wUAAAAJ

My PhD research (2011-2014) include:

- Wet chemical synthesis of functional nanomaterials like diverse metal (mainly Ni, Co and Mn based) oxides/hydroxides/molybdate/sulphide/carbonate and electrochemical study.
- Synthesis of Conducting polymers and detail study of effects of doping (proton/transition metal ion) on structure and property.
- Synthesis of graphene and CNT based binary and ternary nanocomposites with inorganic metal oxides and conducting polymer, and characterization as supercapacitor electrode material.
- Fabrication of hybrid supercapacitor/solid state flexible supercapacitor.

During my first postdoc at KAIST, South Korea, (2015-2016) my research area was:

- Synthesis, liquid phase exfoliation and delamination and functionalization of 2D Mxenes.
- Surface engineering of graphene to form stable gels for high performance battery/supercapacitor application.

During my second postdoctoral work at University of Waterloo, Canada (2016-2017), I worked on a NSERC (Canada) funded Industry (NanoXplore, Canada)-Academia joint project at University of Waterloo. My key research area was:

- Development of graphene-based lithium-sulfur batteries by developing inexpensive, simple processing methods to intimately mix sulfur and graphene with polymer system (<u>US patent</u>).
- Development of strategy to fabricate graphene based high voltage supercapacitor with engineered IL electrolyte, with unprecedented electrochemical performance. Through our techniques we have overcome some fundamental bottlenecks in the areas of flexible supercapacitor.

Current Research as Assistant Professor at CNMS, JAIN University (2017-till date)

Understanding materials behaviour, task specific modification and incorporation into electrochemical energy

storage and conversion devices

- Development of aqueous zinc- ion batteries
- > Development of rechargeable Lithium-sulfur and sodium-sulfur batteries
- > Development of all climate's operational flexible supercapacitors
- > Development of hard carbon anode for Na-ion batteries
- Fast charging anodes for Li-ion batteries
- > Explore high entropy materials as conversion-based anodes in Li-ion batteries and as bifunctional electrocatalyst.

External Project Undertaken

Title	Role	Awarding agency	Amount	Ongoing/To be
				start
Towards Designing High Performance	PI	CPRI	Rs.	Ongoing (March
Rechargeable Zinc Ion Aqueous			3497000.00	2023-March 2025)
Batteries				
Towards Developing Flexible	PI	SERB	Rs.	Complete
Miniaturized Lithium Sulfur Batteries			3435360.00	
Biomass Derived Heteroatom Doped	PI-2	DST- Hydrogen and	Rs.	Complete
Graphene and Hard Carbon Composites		Fuel cell (Technology	6585392.00	
for Energy Storage Application		Mission Division)		

Thesis Supervision (PhD-2 guided, 1 submitted, PhD-3 ongoing, M.Sc-2, M.Tech-2)

Sl.	Title of Thesis.	Name of the	Guide/Co-	PhD/M.Sc/	Ongoing/complete
No		student	guide	M.Tech	
		(Institute)			
1	Investigations on functional	Dr. Radha	Guide	PhD	Complete
	nanomaterials and nanocomposites for	Nagaraj			
	electrochemical energy storage				
2	Synthesis and Characterization of	Dr. Pranav	Co-guide	PhD	Complete
	Electrode materials for Lithium-ion	Kulkarni	(Guide: Prof.		
	batteries		Geetha R		
			Balakrishna)		
3	Design and Optimization of Transition	Mr. Hemanth	Guide	PhD	Submitted
	Metals Based Composites as High	K Beere			
	Performance Electrocatalysts in Fuel				
	Cells and as Electrodes in Li-ion				
	Batteries				
4	Developing in-plane flexible	Mr. T	Guide	PhD	Ongoing (2019
	rechargeable Zn-ion batteries	Prahalada			onwards)

5	Biomass derived carbonaceous materials	Ms. Pooja B.	Guide	PhD	Ongoing (2019
	as electrodes in metal ion	Naik			onwards)
	batteries/capacitors				
6	Development of cathode materials for	Mr. Naveen S	Guide	PhD	Ongoing (2021
	Li-S batteries				onwards)
7	Investigation of the effect of	Ms. Phenicia	Guide	M. Tech	Complete
	concentration and additive on an	Shabong			
	electrolyte for aqueous Zn-ion batteries				
8	Synthesis and characterization of	Mr.	Guide	M. Tech	Complete
	molybdenum sulfide as cathode material	Mohammed			
	for aqueous zinc ion batteries.	Waheeb			
		Wakeel			
9	Deep Eutectic Solvent as an Electrolyte	Mr. T.	Guide	M.Sc	Complete
	for Rechargeable Zinc ion Batteries	Prahalada			
10	Development of vanadium oxide based	Mr.	Guide	M.Sc	Complete
	Cathode for aqueous Zn ion batteries	Souradeep			
		Banerjee			

List of Publications:

Citations: 2630 (Google Scholar),

h-index = 32, i-10 index = 55

S. N o.	Author(s)	Title	Name of Journal	Volume	Page	Year	Impact factor 2023	index
1	P. Yadav, K. Samanta, V. Arya, D. Biswas, H- S. Kim, C. Bakli*, H. Y. Jung*, <u>D. Ghosh*</u>	A 2.5 V in-plane flexi- pseudocapacitor with unprecedented energy and cycling efficiency for all- weather applications	Small	https://doi.org/10.10 02/smll.202400975	240097 5	2024	13.3	Q1
2	HK Beere, NS Reddy, P Kulkarni, K Samanta, HY Jung, <u>D Ghosh*</u>	Compositionally complex ball-in-ball type metal oxide anode via laser- induced fast fabrication for binder-free high- capacity Li-ion batteries	Journal of Energy Storage	80	110325	2024	9.4	Q1
3	HK Beere, KV Yatish, K Aravind, <u>D Ghosh*,</u> RG Balakrishna,* K Pramoda*	Unveiling favorable synergy of tubules-like NiMoSe2 with defect-rich borocarbonitride over graphene or MXene for efficient hydrogen evolution reaction electrocatalysis	International Journal of Hydrogen Energy	54	1582- 1592	2024	7.2	Q1

4	H. K.Beere, P. Kulkarni, U. N.Maiti, R. G. Balakrishna, P. Mukherjee, H. Y. Jung, K. Samanta, <u>D. Ghosh</u> *	Realizing Favourable Oxygen Electrocatalytic Activity with Compositionally Complex Metal Molybdates	Sustainable Energy and Fuels	7	4303- 4316	2023	5.6	Q1
5	A. Juno Rose, A. Samage <u>, D. Ghosh,*</u> S.K. Nataraj*	Preparation of sustainable and binder-free electrode materials for high energy asymmetric supercapacitor applications: A cleaner alternative	Journal of cleaner production	417	13795 6	2023	11.1	Q1
6	P. Yadav, S. K. Nataraj, P. B. Naik, H. K. Beere, K. Samanta, N. S Reddy, J. S. Algethami, M. Faisal, F. A. Harraz, D. Ghosh*	Fabrication of an energy dense, binder-free Zn//V ₅ O ₁₂ .6H ₂ O solid state in-plane flexible battery via a rapid, and scalable approach	ACS Applied Energy Materials	6	1799- 1809	2023	6.4	Q1
7	P. Kulkarni, H. Jung, <u>D.</u> <u>Ghosh</u> *, M. Jalalah, M. Alsaiari, F A Harraz, R G. Balakrishna	A comprehensive review of pre-lithiation/sodiation additives for Li-ion and Na-ion batteries	Journal of Energy Chemistry	76	479- 494	2023	13.1	Q1
8	B.Munisha, B. Mishra, J. Nanda*, N. K Sahoo, <u>D. Ghosh</u> , KJ Sankaran, S. Suman	Enhanced photocatalytic degradation of 4- nitrophenol using polyacrylamide assisted Ce-doped YMnO3 nanoparticles	Journal of Rare Earths	41	1541- 1550	2023	4.9	Q1
9	Radha N, Rangaswamy P, P. Yadav, H. K. Beere, S. N. Upadhyay1, S. K. Nataraj, S. Pakhira, and <u>D. Ghosh*</u>	Aging Responsive Phase Transition of VOOH to $V_{10}O_{24}$, nH ₂ O vs. Zn ²⁺ Storage Performance as Rechargeable Aqueous Zn-Ion Battery Cathode	ACS Applied Materials & Interfaces	14	56886	2022	9.5	Q1
10	P. Yadav, P. B. Naik, H. K. Beere, N. S Reddy, K. Samanta, S. K. Nataraj, J. S. Algethami, M. Faisal, F. A. Harraz, D. Ghosh*	Developing a high performance in-plane flexible aqueous Zinc-ion batteries with laser scribed carbon supported all electrodeposited electrodes	Langmuir	38	16203	2022	3.9	Q1
11	P. B. Naik, P. Yadav, R. Nagaraj, H. K. Beere, U. N. Maiti, C. Mondal, S. K. Nataraj, D. Ghosh* ,	Developing High Performance Flexible Zinc Ion Capacitor from Agricultural Waste Derived Carbon Sheets	ACS Sustainable Chemistry & Engineering	10	1471– 1481	2022	8.4	Q1

12	H K Beere S Pakhira	Realizing Favorable	Advanced	9	2201478	2022	5.4	01
	P Vaday A Singh S	Synergism Toward	Materials	-	22011/0	2022		21
	N Upodbyoy D B	Efficient Hydrogen	Interfoces					
	N. Opaulyay, F. D.	Enclent Hydrogen	interfaces					
	Naik, Naiaraj S. K.,	Evolution Reaction with						
	<u>D. Ghosh*</u>	Heterojunction						
		Engineered						
		Cu7S4/CuS2/NiS2 and						
		Functionalized Carbon						
		Sheet Heterostructures						
13	A. Samage, M.	High power, long cycle	Chemical	435	134952	2022	15.1	<i>Q1</i>
	Halkarni,	life capacitive carbon	Engineering					
	<u>D. Ghosh*,</u>	from agricultural biomass	Journal					
	S. K. Nataraj*	waste with simultaneous						
		value addition in						
		environment application						
14	P, Rangaswamy; H.K	Troubleshooting the	ACS Applied	5	8292-	2022	6.4	<i>Q1</i>
	Beere, P. Yadav, M.	limited Zn ²⁺ storage	Energy		8303			
	Jalalah, M. Faisal, F.	performance of $Ag_2V_4O_{11}$	Materials					
	Harraz,	cathode in zinc sulfate						
	D. Ghosh*	electrolyte via favourable						
		synergism with reduced						
		graphene oxide						
15	Rangaswany P R K	Recent Progress in	Journal of	10	508-553	2022	119	01
10	Pai	Quantum Dots Based	Materials	10	500 555	2022	11.7	21
	D Ghosh*	Nanocomposites	Chemistry A					
		Flectrodes for						
		Rechargeable Monovalent						
		Metal_ion and Lithium						
		Metal Batteries						
16	A Majumdar P Dutta	Impact of Atomic	Small	18	2200622	2022	13.3	01
10	A Sikdar H Lee \mathbf{D}	Rearrangement and	Sinan	10	2200022	2022	10.0	21
	Ghosh S N Iba	Single Atom Stabilization						
	S Tripathi Y T Oh U	on MoSe ₂ @						
	N Maiti	NiCosSet Heterostructure						
		Catalyst for Efficient						
		Overall Water Splitting						
		overall water splitting						
17	Rangaswamv P. C.	An account on the deep	Sustainable	33	e00477	2022	9.6	01
	Mondal, D. Mondal.	eutectic solvents-based	Materials	_				~
	D. Ghosh*	electrolytes for	and					
		rechargeable batteries and	Technologies					
		supercapacitors						
18	P. Kulkarni, H. K.	Developing a high-	Journal of	924	116851	2022	4.5	<i>Q1</i>
	Beere, M. Jalalah, M.	performance aqueous zinc	Electroanalyt					
	Alsaiari, F A Harraz, R	battery with Zn ²⁺ pre-	ical					
	G. Balakrishna,	intercalated V ₃ O ₇ . H ₂ O	Chemistry					
	D. Ghosh*	cathode coupled with	, i i i i i i i i i i i i i i i i i i i					
		surface engineered						
		metallic zinc anode						
19	Rangaswamy P., S. K.	Rational designing of	Materials	2	5006-	2021	5.0	01
	Nataraj.	inorganic and organic	Advances		5046			~ `
	D. Ghosh*	materials based			-			
		nancomposites hybrid as						
		Na-ion battery electrodes						

20	Rangaswamy P.,Radha N., P. Kulkarni, H. K. Beere, S. N. Upadhyay, R. G. Balakrishna, Nataraj, S. K.' S. Pakhira,* <u>D. Ghosh*</u>	Constructing a High- Performance Aqueous Rechargeable Zinc-ion Battery Cathode with Self-assembled Mat-like Packing of Intertwined Ag(I) Pre-inserted V ₃ O ₇ .H ₂ O Microbelts with Reduced Graphene Oxide Core	ACS Sustainable Chemistry and Engineering	9	3985- 3995	2021	8.4	<i>Q1</i>
21	P Kulkarni, <u>D. Ghosh*,</u> Geetha r Balakrishna*	Recent Progress in 'Water-in-Salt' and 'Water-in-Salt'- Hybrid Electrolytes Based High Voltage Rechargeable Batteries	Sustainable Energy and Fuels	5	1619- 1654	2021	5.6	Q1
22	P. Kulkarni, R. Geetha Balkrishna,* D. Ghosh, R.S. Rawat, R. Medwal, B.V.R Choudhuri, M.V. Reddy*	Molten salt synthesis of CoFe2O4 and its energy storage properties	Materials Chemistry and Physics	257	123747	2021	4.6	Q1
23	M. Mandal, R. Nagaraj, K. Chattopadhyay, M. Chakraborty, S. Chatterjee, D. Ghosh , S. K. Bhattacharya*	A high-performance pseudocapacitive electrode based on CuO– MnO2 composite in redox-mediated electrolyte	Journal of Materials Science	56	3325- 3335	2021	4.5	Q1
24	R. Nagaraj, S. Pakhira, K. Aruchamy, P. Yadav, D. Mondal, K. Dharmalingm, N. S. Kotrappanavar,* <u>D.</u> <u>Ghosh</u> *	Catalyzing the Intercalation Storage Capacity of Aqueous Zinc-Ion Battery Constructed with Zn (II) Preinserted Organo- Vanadyl Hybrid Cathode	ACS Applied Energy Materials	3	3425- 3434	2020	6.4	Q1
25	G Wen, S Rehman, TG Tranter, <u>D. Ghosh</u> , Z Chen, JT Gostick, MA Pope	Insights into multiphase reactions during self- discharge of Li-S batteries	Chemistry of Materials	32	4518- 4526	2020	8.6	Q1
26	K. Aruchamy, Radha N., HM Manohar, MR Nidhi, D. Mondal, S. K. Nataraj, <u>D. Ghosh*</u>	One-Step Green Route Synthesis of Spinel ZnMn ₂ O ₄ Nanoparticles Decorated on MWCNTs as a Novel Electrode Material for Supercapacitor Materials	Materials Science and Engineering B: Solid-State Materials for Advanced Technology,	252	114481	2020	3.6	Q2
27	K.Aruchamy, Nidhi. Nidhi, M.R. H.M. Manohara, A. Mahto, N. Radha, D. Kalpana, <u>D.</u> <u>Ghosh</u> , D. Mondal, S. K. Nataraj.	Ultrafast Synthesis of Exfoliated Manganese Oxides in Deep Eutectic Solvents for Water Purification and Energy Storage	Chemical Engineering Journal	379	122327	2020	15.1	QI

28	N Radha, A Kanakaraj,	Boosting the	Journal of	851	113482	2019	4.5	<i>Q1</i>
	HM Manohar, MR	electrochemical	Electroanalyt					
	Nidhi, D. Mondal, S. K.	performance of	ical					
	Nataraj, D. Ghosh*	polyaniline based all-	Chemistry					
		solid-state flexible						
		supercapacitor using						
•		NiFe2O4 as adjuvant		401	000 000	2010	- -	01
29	N Radha, A Kanakaraj,	Binder free self-standing	Applied	481	892-899	2019	6.7	QI
	HM Manonar, MR	high performance	Surface					
	Nataraj D Chosh*	based on	Science					
	Nataraj, <u>D. Gitosi</u>	graphene/titanium carbide						
		composite aerogel						
30	P. Kulkarni, C. Varnika.	Investigating the role of	Journal of	851	113403	2019	4.5	01
	B. Low, Yi. Tong, D.	precipitating agents on	Electroanalyt					~
	Ghosh, G. Balakrishna,	the electrochemical	ical					
	R S Rawat, S Adams,	performance of	Chemistry					
	MV Reddy	MgCo2O4						
31	S. Chakraborty, H. M.	A Facile Process for	ACS	7	14225	2019	8.4	<i>Q1</i>
	Manohara; K.	Metallizing DNA in	Sustainable					
	Aruchamy, Kanakaraj;	Multi-Tasking Deep	Chemistry &					
	N. Siligii, K. Plasau, D. Kalpana D. Chosh S	friendly C C Coupling	Engineering					
	Kalpana, <u>D. Gilosii</u> , S. K. Natarai, D. Mondal	Reaction and						
	ix. i (uturuj, D. i)(olitur	Nitrobenzene Reduction						
32	P. Kulkarni, D. Ghosh ,	Facile high yield	Ceramics	45	14775	2019	5.2	<i>Q1</i>
	G. Balakrishna, R. S	synthesis of MgCo ₂ O ₄	International					~
	Rawat, M. V Reddy, S.	and investigation of its						
	Adams	role as anode material for						
		lithium ion batteries						
33	P. Kulkarni, <u>D. Ghosh</u> ,	Investigation of	Ceramics	45	10619	2019	5.2	<i>Q1</i>
	G. Balakrishna, R. S Dowet S. Adoma, M.V.	$MnCo_2O_4/MWCN1$	International					
	Reddy	material for lithium ion						
	Reduy	hattery						
34	H. M. Manohara, S.	Engineering Fe-doped	Journal of	7	4988-	2019	11.9	01
	Chakraborty, K.	highly oxygenated	Materials		4997			~
	Aruchamy, D. Ghosh,	solvothermal carbon from	Chemistry A					
	N. Singh, K. Prasad, D	glucose-based eutectic						
	Kalpana, SK Nataraj, D.	system as active						
	Mondal	microcleaner and efficient						
25	Manahar II M. V	Carbocatalyst		7	10142	2010	0 1	01
35	Aruchamy S	Burification Using	ACS Sustainable	/	10145-	2019	0.4	21
	Chakraborty D Ghosh	Engineered Solvothermal	Chemistry &		10155			
	S. K. Nataraj. D.Mondal	Carbon Based Membrane	Engineering					
	~·····································	Derived from a Eutectic	88					
		System						
36	D. Ghosh,	Trapping and	Advanced	8	1801979	2018	27.8	<i>Q1</i>
	M. Gad, I. Lau, M. A.	Redistribution of	Energy					
	Pope	Hydrophobic Sulfur Sols	Materials					
		in Graphene–						
		Polyethyleneimine						
		Networks for Stable L1–S						
		Camouco		1				

37	A Kanakaraj, M. Bisht,	Direct Conversion of	Green	20	3711-	2018	9.8	01
	P. Venkatesu, D.	Lignocellulosic Biomass	Chemistry		3716			~
	Kalpana N Maalige N	to Biomimetic Tendril-	Chroniser J		0,10			
	Singh D Ghosh D	Like Functional Carbon						
	Mondal S K Natarai	Helices: A Protein						
	Wondar, S. K. Wataraj	Friendly Host for						
		Cytochrome C						
28	7 Sha	Decorating Graphana	ACS Nono	11	10077	2017	171	01
30	D. Chosh	Ovida with Ionia Liquid	ACS Nallo	11	10077-	2017	17.1	21
	$\frac{D. \text{ GHOSH}}{M}$,	Nanodroplata: An			10087			
	M. A. Pope	Approach Loading to						
		Approach Leading to						
		Energy Dense, High						
20		Voltage Supercapacitors		15	2401	2016	2.1	00
39	M. Mandal, <u>D. Ghosh</u> ,	A Novel Asymmetric	Journal of	45	3491-	2016	2.1	Q_2
	K. Chattopadhyay, C. K.	Supercapacitor Designed	Electronic		3500			
	Das	with Mn ₃ O ₄ @Multi-wall	materials					
		Carbon Nanotube						
		Nanocomposite and						
		Reduced Graphene Oxide						
		Electrodes						
40	<u>D. Ghosh</u> , J. W. Lim, R.	High Energy Density All	ACS Applied	8	22253-	2016	9.5	<i>Q1</i>
	Narayan, S. O. Kim	Solid State Asymmetric	Materials		22260			
		Pseudocapacitors Based	and					
		on Free Standing	Interfaces					
		Reduced Graphene						
		Oxide-Co ₃ O ₄ Composite						
		Aerogel Electrodes						
41	D. Ghosh , C. K. Das	Hydrothermal Growth of	ACS Applied	7	1122–	2015	9.5	<i>Q1</i>
		Hierarchical Ni ₃ S ₂ and	Materials		1131			
		Co_3S_4 on a Reduced	and					
		Graphene Oxide	Interfaces					
		Hydrogel@Ni Foam: A						
		High-Energy-Density						
		Aqueous Asymmetric						
		Supercapacitor						
42	<u>D. Ghosh</u> , M. Mandal,	Solid State Flexible	Langmuir	31	7835	2015	3.9	<i>Q1</i>
	C. K. Das	Asymmetric						
		Supercapacitor Based on						
		Carbon Fiber Supported						
		Hierarchical Co(OH) _x CO ₃						
		and Ni(OH) ₂						
43	<u>D. Ghosh</u> , S. O. Kim	chemically modified	Electronics	11	719-734	2015	2.4	<i>Q2</i>
		graphene based	Materials					
		supercapacitor for	Letter					
		flexible and miniature						
		devices (Invited Review)						
44	C. Mondal, <u>D. Ghosh</u> ,	Synthesis of multiwall	Applied	359	500-507	2015	6.7	<i>Q1</i>
	M. Ganguly, A. K.	carbon nanotube wrapped	Surface					
	Sasmal, A. Roy, T. Pal	Co(OH) ₂ flakes: A high-	Science					
		performance						1
		supercapacitor						
45	C. Mondal, <u>D. Ghosh</u> ,	Mn ₃ O ₄ nanoparticles	New Journal	39	8373-	2015	3.3	<i>Q2</i>
	T. Aditya, A. K. Sasmal	anchored to multiwall	of Chemistry		8380			
	T. Pal	carbon nanotubes: a						
		distinctive synergism for						1

				1				
		high performance						
		supercapacitor						
46	S. Giri, <u>D. Ghosh</u> , and	Growth of Vertically	Advanced	24	1312-	2014	19	Q1
	C. K. Das	Aligned Tunable	Functional		1324			
		Polyaniline on	Materials					
		Graphene/ZrO ₂						
		Nanocomposites for						
		Supercapacitor Energy-						
		Storage Application						
47	<u>D. Ghosh</u> , S. Giri, Md.	α MnMoO ₄ /Graphene	Dalton	43	11067-	2014	4	Q1
	Moniruzzaman, T. Das,	Hybrid Composite: High	Transactions		11076			
	M. Mandal, C. K. Das	Energy Density						
		Supercapacitor Electrode						
40		Material		1 477		2014		01
48	D. Ghosh , S. Giri, S.	Reduced Graphene	Electrochimi	147	557-564	2014	0.0	QI
	Dhibar, C. K. Das	Oxide/Manganese	ca Acta					
		Carbonale Hybrid						
		Derformence						
		Supercapacitor Electrode						
		Material						
49	D Ghosh S Giri M	High performance	RSC	4	26094-	2014	39	01
	Mandal C K Das	supercapacitor electrode	Advances	-	26101	2014	5.7	21
	Multuri, C. R. Dus	material based on	The vallees		20101			
		vertically aligned PANI						
		grown on reduced						
		Graphene oxide/Ni(OH) ₂						
		hybrid composite						
50	D. Ghosh, S. Giri, C. K.	Hydrothermal Synthesis	Environment	39	1059-	2014	2.8	<i>Q2</i>
	Das	of Platelet $\beta Co(OH)_2$ and	al Progress &		1064			
			G ()]]					
		Co ₃ O ₄ : Smart Electrode	Sustainable					
		Co ₃ O ₄ : Smart Electrode Material for Energy	Sustainable Energy					
		Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application	Sustainable Energy					
51	M. Mandal, <u>D. Ghosh</u> ,	Co ₃ O ₄ : Smart ElectrodeMaterial for EnergyStorage ApplicationPolyaniline-Wrapped 1D	Sustainable Energy RSC	4	30832-	2014	3.9	Q1
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K.	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O	Sustainable Energy RSC Advances	4	30832- 30839	2014	3.9	Q1
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das	Co ₃ O ₄ : Smart ElectrodeMaterial for EnergyStorage ApplicationPolyaniline-Wrapped 1DCoMoO ₄ .0.75H ₂ ONanorods as Electrode	Sustainable Energy RSC Advances	4	30832- 30839	2014	3.9	Q1
51	M. Mandal, <u>D. Ghosh,</u> S. Giri, I. Shakir, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for	Sustainable Energy RSC Advances	4	30832- 30839	2014	3.9	Q1
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy	Sustainable Energy RSC Advances	4	30832- 30839	2014	3.9	Q1
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application	Sustainable Energy RSC Advances	4	30832- 30839	2014	3.9	<i>Q1</i>
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P.	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled	Sustainable Energy RSC Advances	4 53	30832- 30839 13030- 12045	2014	3.9 4.2	Q1 Q1 Q1
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u>	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes-	Sustainable Energy RSC Advances Industrial and	4 53	30832- 30839 13030- 13045	2014	3.9 4.2	Q1 Q1 Q1
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C.	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene)	Sustainable Energy RSC Advances Industrial and Engineering Charrietary	4	30832- 30839 13030- 13045	2014	3.9 4.2	Q1 Q1 Q1
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Basearch	4 53	30832- 30839 13030- 13045	2014	3.9 4.2	Q1 Q1 Q1
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research	4 53	30832- 30839 13030- 13045	2014	3.9 4.2	Q1 Q1 Q1
51	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research	4 53 5	30832- 30839 13030- 13045	2014 2014 2014 2014	3.9 4.2	Q1 Q1 Q1
51 52 53	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das <u>D. Ghosh</u> , S. Giri, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials Synthesis, Characterizations and	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research Nanoscale	4 53 5	30832- 30839 13030- 13045 10428- 10437	2014 2014 2014 2013	3.9 4.2 6.7	Q1 Q1 Q1 Q1 Q1
51 52 53	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das <u>D. Ghosh</u> , S. Giri, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials Synthesis, Characterizations and electrochemical	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research Nanoscale	4 53 5	30832- 30839 13030- 13045 10428- 10437	2014 2014 2014 2013	3.9 4.2 6.7	Q1 Q1 Q1 Q1
51 52 53	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das <u>D. Ghosh</u> , S. Giri, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials Synthesis, Characterizations and electrochemical performance of Graphene	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research Nanoscale	4 53 5	30832- 30839 13030- 13045 10428- 10437	2014 2014 2014 2013	3.9 4.2 6.7	Q1 Q1 Q1 Q1
51 52 53	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das <u>D. Ghosh</u> , S. Giri, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials Synthesis, Characterizations and electrochemical performance of Graphene decorated with 1D	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research Nanoscale	4 53 5	30832- 30839 13030- 13045 10428- 10437	2014 2014 2014 2013	3.9 4.2 6.7	Q1 Q1 Q1 Q1
51 52 53	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das <u>D. Ghosh</u> , S. Giri, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials Synthesis, Characterizations and electrochemical performance of Graphene decorated with 1D NiMoO4, nH2O nanorods	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research Nanoscale	4 53 5	30832- 30839 13030- 13045 10428- 10437	2014 2014 2014 2013	3.9 4.2 6.7	Q1 Q1 Q1 Q1
51 52 53 54	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das <u>D. Ghosh</u> , S. Giri, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials Synthesis, Characterizations and electrochemical performance of Graphene decorated with 1D NiMoO4, nH2O nanorods Preparation of CTAB	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research Nanoscale ACS	4 53 5 1	30832- 30839 13030- 13045 10428- 10437 1135-	2014 2014 2014 2013	3.9 3.9 4.2 6.7 8.4	Q1 Q1 Q1 Q1 Q1 01
51 52 53 54	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das <u>D. Ghosh</u> , S. Giri, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials Synthesis, Characterizations and electrochemical performance of Graphene decorated with 1D NiMoO4, nH2O nanorods Preparation of CTAB assisted hexagonal	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research Nanoscale ACS Sustainable	4 53 5 1	30832- 30839 13030- 13045 10428- 10437 1135- 1142	2014 2014 2014 2013	3.9 4.2 6.7 8.4	Q1 Q1 Q1 Q1 Q1 Q1
51 52 53 54	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das <u>D. Ghosh</u> , S. Giri, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials Synthesis, Characterizations and electrochemical performance of Graphene decorated with 1D NiMoO4, nH2O nanorods Preparation of CTAB assisted hexagonal platelet	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research Nanoscale ACS Sustainable Chemistry	4 53 5	30832- 30839 13030- 13045 10428- 10437 1135- 1142	2014 2014 2014 2013 2013	3.9 4.2 6.7 8.4	Q1 Q1 Q1 Q1 Q1 Q1
51 52 53 54	M. Mandal, <u>D. Ghosh</u> , S. Giri, I. Shakir, C. K. Das S. Dhibar, P. Bhattacharya, <u>D.</u> <u>Ghosh</u> , G. Hatui, and C. K. Das <u>D. Ghosh</u> , S. Giri, C. K. Das	Co ₃ O ₄ : Smart Electrode Material for Energy Storage Application Polyaniline-Wrapped 1D CoMoO ₄ .0.75H ₂ O Nanorods as Electrode Materials for Supercapacitor Energy Storage Application Graphene-Single Walled Carbon Nanotubes- Poly(3-methylthiophene) Ternary Nanocomposite for Supercapacitor Electrode Materials Synthesis, Characterizations and electrochemical performance of Graphene decorated with 1D NiMoO4, nH2O nanorods Preparation of CTAB assisted hexagonal platelet Co(OH)2/Graphene	Sustainable Energy RSC Advances Industrial and Engineering Chemistry Research Nanoscale ACS Sustainable Chemistry and	4 53 5	30832- 30839 13030- 13045 10428- 10437 1135- 1142	2014 2014 2014 2013	3.9 4.2 6.7 8.4	Q1 Q1 Q1 Q1 Q1 Q1

		efficient supercapacitor						
		electrode material						
55	D. Ghosh, S. Giri, A.	Supercapacitor based on	RSC	3	11676-	2013	3.9	01
	Mandal, C. K. Das	H^+ and Ni ²⁺ co-doped	Advances	_	11685			~
	,	Polyaniline/MWCNTs						
		Nanocomposite:						
		Synthesis and						
		electrochemical						
		characterization						
56	D. Ghosh S. Giri A	Graphene decorated with	Chemical	573	41-47	2013	2.8	02
00	Mandal C K Das	$Ni(OH)_2$ and Ag	Physics	575	11 17	2013	2.0	22
	Muldul, C. R. Dus	deposited Ni(OH) ₂	Letters					
		stacked nanoplate for						
		Supercapacitor						
		application						
57	D. Ghosh S. Giri A	H^+ Fe ³⁺ codoped	Applied	276	120-128	2013	6.7	01
	Mandal, C. K. Das	polyaniline/MWCNTs	Surface	-/ 0	120 120	2010		2-
		nanocomposite: superior	Science					
		electrode material for						
		supercapacitor application						
58	D. Ghosh. S. Giri, S.	In Situ Synthesis of	Polymer-	52	213-220	2013	2.7	02
	Sahoo, C. K. Das	Graphene/Amine-	Plastics	-			-	~
	,	Modified Graphene,	Technology					
		Polypyrrole Composites	and					
		in Presence of SrTiO ₃ for	Engineering					
		Supercapacitor	0 0					
		Applications						
59	S. Giri, D. Ghosh , and	One Pot synthesis of	Dalton	42	14361-	2013	4	<i>Q1</i>
	C. K. Das	Ilmenite-Type	Transactions		14364			
		NiMnO ₃ /"Nitrogen-						
		Doped" Graphene						
		nanocomposite as Next						
		Generation						
		Supercapacitors						
60	S. Giri, <u>D. Ghosh</u> , and	In-Situ Synthesis of	Journal of	697	32-45	2013	4.5	<i>Q1</i>
	C. K. Das	Cobalt Doped Polyaniline	electroanalyti					
		Modified Graphene	cal chemistry					
		Composites for High						
		Performance						
		Supercapacitor Electrode						
		Materials						
61	S. Giri, <u>D. Ghosh</u> , C. K.	A facile synthesis of	Journal of	42	2595-	2013	2.1	<i>Q2</i>
	Das	palladium doped	Electronic		2605			
		polyaniline modified	Materials					
		carbon nanotube						
		composites for						
		supercapacitors						
		application						
62	S. Giri, <u>D. Ghosh</u> , and	Effect of ruthenium (III)	NANO	8	1350026	2013	1.2	<i>Q3</i>
	C. K. Das	incorporation in						
		polyaniline backbone:						
		materials for						
		supercapacitive energy						
	1	L storage application		1	1	1	1	1

63	S. Giri, <u>D. Ghosh</u> , A. P. Kharitonov, C. K. Das	Study of copper ferrite nanowire formation in presence of carbon nanotubes and influence of fluorination on high performance supercapacitor energy storage application	Functional Materials Letters	5	1250046	2012	1.3	Q3
64	Md. Moniruzzaman, S. Sahoo, <u>D. Ghosh</u> , C. K. Das, R.Singh	Preparation and Characterization of In- situ Polymerized Polypyrrole/modified MWCNTs Nanocomposites in Presence of BaTiO ₃	Journal of Applied Polymer Science	128	698-705	2012	3	Q2
65	S. Sahoo, P. Bhattacharya, G. Hatui, <u>D. Ghosh</u> , C. K. Das	Sonochemical Synthesis and Characterization of Amine-Modified Graphene/Conducting Polymer Nanocomposites	Journal of Applied Polymer Science	128	1476- 1483	2012	3	Q2
66	S. Giri, <u>D. Ghosh</u> , A. Mandal, C. K. Das	Preparation and Characterization of Zr (IV) Doped Polyaniline for Supercapacitor Application	Macromolecu lar Symposia	327	54-63	2013		<i>Q</i> 3
67	A. Mandal, <u>D. Ghosh</u> , A. Malas, P. Pal, C. K. Das	Synthesis and Microwave Absorbing Properties of Cu-Doped Nickel Zinc Ferrite/Pb(Zr0.52Ti0.48) O3 Nanocomposites	Journal of Engineering	2013	391083	2013	2.7	<i>Q</i> 3

Detail of Book Chapter:

Three chapters contributed to the following book

"Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage" Editors: Ram Gupta, Tuan Anh Nguyen, Ghulam Yasin; eBook ISBN: 9780323998291

• CHAPTER 7: Recent development in MOFs for oxygen evolution reactions, Hemanth Kumar Beere, Sanna Kotrappanavar Nataraj and Debasis Ghosh*

- CHAPTER 13 MOFs-based nanomaterials for metal-sulfur batteries
- Authors: Prahlad Yadav, Sanna Kotrappanavar Nataraj and Debasis Ghosh*
- CHAPTER 14 MOFs-based nanomaterials for metal-ion batteries

Authors: Rangaswamy Puttaswamy, Sanna Kotrappanavar Nataraj and Debasis Ghosh*

Detail of patent:

S.No	Patent Title	Name of	Patent Publication	Status	Agency/Country
		Applicant(s)	No./Application No.		

1.	Graphene-Polymer Porous Scaffold for Stable Lithium Sulfur Batteries	M. A. Pope, <u>D. Ghosh</u> , Y, Zhong, S. Nazarpour	US 11,515,519 B2 Date: 28/11/2022	GRANTED	U.S. Patent Patent No .: US 11,515,519 B2
2	Method for preparing vanadium based cathode material for rechargeable zinc ion batteries	<u>D. Ghosh</u> , S. K. Nataraj, Radha Nagaraj,	Application No. 202141042037 Date of Filing-17/09/2021 Publication Date (U/S 11A) – 20/05/2022	Published	India
3	Silver vanadium oxide- reduced graphene oxide composite and method for synthesis thereof	<u>D. Ghosh</u> , Rangaswamy, P. Radha N	Application Number: 202141046765 Date of Filing-13/10/2021 Publication Date (U/S 11A) – 20/05/2022	Published	India
4	Interdigitated electrode composition and method for synthesis thereof	<u>D. Ghosh</u> , S. K. Nataraj, P. Yadav	Application Number: 202241028663 Date of Filing-18/05/2022 PUBLICATION DATE (U/S 11A) - 03/06/2022	Published	India
5	High entropically stabilized metal Oxides@reduced graphene oxide (HEO@RGO) nanocomposite and method	D. Ghosh, H. K. Beere	Application Number: 202341054382 Ref. No. TEMP/E- 1/59754/2023-CHE Date of filing: 13. 08. 2023	Filed	India

Course taught (2017-2022):

Subject (Chemistry, M.Sc)	Hour (s)/module
Electrochemistry	20
Electrochemical methods	20
Organic Photochemistry	20
Laboratory course	30

Conference/Seminar attended :

- Session chair at "International Online Conference on Nano Materials (ICN 2021)", held at Mahatma Gandhi University Kottayam, Kerala, India, 09th 11th April 2021.
- Session Chair at "2nd National Seminar on Frontiers in Materials and Chemical Sciences (NSFMC 2020)" organized by the Center for Nano and Material Sciences, JAIN (DEEMED-TO-BE UNIVERSITY), Bengaluru, India during 31st August to 4th September 2020.
- Session Chair at "Virtual International Conference on Sustainable Energy and Environmental Technologies (V-ICSEET-2020), Reva University, Bangalore on 02-04th November 2020.
- Session Chair at "International Conference on Frontiers in Materials from Basic Science to Real Time Applications-2019", CNMS, JAIN University, 13th -16th March, 2019."

- Invited talk (Webinar) on, "Rational Designing of Graphene and Polymer Based Nanocomposites towards Electrochemical Energy Storage" held at JIS Institute of Advanced Studies and Research, Kolkata on 9th September 2020.
- Invited talk at "International Online Conference on Nano Materials (ICN 2021)", held at Mahatma Gandhi University Kottayam, Kerala, India, 09th 11th April 2021.
- Invited talk at "International conference F2DM International conference, CNMS, Jain University, Bangalore on 13- 16th March 2019.
- Invited talk at RAMAIAH Institute of Technology in the Faculty Development Programme (FDP) on "Recent Trends in Photonic Techniques" during 31st July – 5th August 2017.
- Radha N, Kanakaraj A, Manohara H. M, Nidhi M. R, Dibyendu Mondal, S. K. Nataraj and Debasis Ghosh*; "Flexible Paper Like Supercapacitive Electrode Based on Graphene/Titanium Carbide Composite Aerogel", International Conference on Green methods for Separation and Purification and Nanomaterial Synthesis (GMSPNS), Jain University, Bangalore, 24th & 25th April 2018. (Poster presentation)
- Radha N, Kanakaraj A, Manohara H. M, Nidhi M. R, Dibyendu Mondal, S. K. Nataraj and Debasis Ghosh*; "Boosting the Supercapacitive Performance of Polyaniline Using Nickel-iron Oxide as Adjuvant", KSTA Conference, NMKRV College, Bangalore, held at Bangalore on 1- 2nd February 2019. (Poster presentation)
- Radha N, Kanakaraj A, Manohara H. M, Nidhi M. R, Dibyendu Mondal, S. K. Nataraj and Debasis Ghosh*; "Constructing a High Performance Aqueous Zinc Ion Battery Cathode with a Organo Vanadyl Hybrid Material", International conference F2DM International conference, CNMS, Jain University, Bangalore on 13- 16th March 2019. (Best Oral Presentation)
- Radha N and Debasis Ghosh*; "Stimulating the Zinc Ion Diffusivity Inside Functionalized VO_X Crystal Cathode Material for Aqueous Zinc Ion Battery", International conference International Conference on Functional Materials, IIT Kharagpur, Kharagpur on 06- 08th January 2020. (Best Poster Presentation)
- Radha N, S. K. Nataraj and Debasis Ghosh; "Constructing High Performance Rechargeable Zinc Ion Battery Based on the V₁₀O₂₄·12H₂O Cathode", Virtual International Conference on Sustainable Energy and Environmental Technologies (V-ICSEET-2020), Reva University, Bangalore on 02-04th November 2020.
- Rangaswamy P, Debasis Ghosh*, "Constructing high performance zinc ion battery cathode with structurally engineered V₃O₇,nH₂O" Virtual International Conference on Sustainable Energy and Environmental Technologies (V-ICSEET-2020), Reva University, Bangalore on 02-04th November 2020. (Best Oral Presentation)
- Prahlad Yadav, Debasis Ghosh*, Constructing a Zinc ion miniaturized planer battery with patterned laser scribed carbon supported electrodes, *International Symposium on Materials of the Millennium: Emerging Trends and Future Prospects*, MMETFP-2021, 19th to 21st November 2021, Pandit Deendayal Energy University, Gujrat (Best Oral presentation)
- Debasis Ghosh* A 2.5 V all climate operational in-plane flexible supercapacitor, International Conference on Women in Electrochemistry (ICWEC-2023) held during April 7-8, 2023, organized by the Electrochemical Society of India, held at IISC Bangalore, India

- Debasis Ghosh* Laser Induced Fast Fabrication of a Compositionally Complex Ball-In-Ball Type Metal Oxide Anode with Boosted Redox Reaction for Binder Free High-Capacity Li-Ion Batteries, Organized by SRMIST India, on 26-29th February 2024
- Hemanth Kumar Beere, Debasis Ghosh*, Metal Sulfides loaded Biomass derived Carbon sheets for evolution reaction, International Symposium on Materials of the Millennium: Emerging Trends and Future Prospects, MMETFP-2021, 19th to 21st November 2021, Pandit Deendayal Energy University, Gujrat.
- Pooja Naik, Debasis Ghosh*, Fabrication of a high-performance flexible Zinc ion capacitor with agricultural biomass derived mesoporous layered carbon sheets, *International Symposium on Materials of the Millennium: Emerging Trends and Future Prospects*, MMETFP-2021, 19th to 21st November 2021, Pandit Deendayal Energy University, Gujrat.
- Prahlad Yadav, Debasis Ghosh*, Designing the miniaturized planar interdigitated zinc-ion batteries with patterned LSC electrodes, National conference on frontiers in Chemistry (CFC-2021), 21st to 23rd October, 2021, REVA University, Bangalore.
- Hemanth Kumar Beere, Debasis Ghosh*, Catalyzing the Oxygen Evolution Reaction with High Entropy Molybdates, Conference on frontiers in Chemistry (CFC-2021), 21st to 23rd October, 2021, REVA University, Bangalore
- Hemanth Kumar Beere, Debasis Ghosh*, Entropy driven Catalytic Activity for low cost OER electrocatalysis, 7th International conference on Advanced Nanomaterials and Nanotechnology, 14th to 17th December 2021, IIT Guwahati, Assam
- Prahlad Yadav, Debasis Ghosh*, Fabricating a Zinc ion miniaturized planer battery with patterned laser scribed carbon supported electrodes, International conference on Advanced materials and mechanical characterizations, December, 2021, SRMIT Chennai
- Kanakaraj Aruchamy, Radha N, Manohara H. M, Nidhi M. R, Dibyendu Mondal, Debasis Ghosh* and Sanna Kotrappanavar Nataraj* presented poster on the topic "One-step Green Route Synthesis of Spinel ZnMn2O4/MWCNT Nano-composites as a Novel Electrode Material for Supercapacitors" in International Conference on Green methods for, Separation and Purification and Nanomaterial Synthesis (GMSPNS), on 24th & 25th April 2018 at CNMS Jain University, Bangalore.
- Debasis Ghosh, Soumen Giri, C.K. Das, In situ synthesis and electrochemical characterisations of Ni2+ doped Polyaniline / MWCNT nanocomposite as a supercapacitor electrode material, Nano Tech, September-2012, Kolkata, West Bengal (Oral presentation)
- Debasis Ghosh, Chapal Kumar Das, Synthesis and characterization of H⁺, Fe³⁺ co-doped PANI/MWCNTs as supercapacitor electrode material. KaSAM 2012, May 9-12, 2012, Kathmandu, Nepal. (Oral presentation)
- Debasis Ghosh, Chapal Kumar Das, presented a poster on 'Preparation of CTAB assisted nanoeplateCo(OH)2/Graphene hybrid material as efficient supercapacitor electrode material'., ISJPS-2013, February 25-27, 2013, Indian Institute of Technology Kharagpur, India.
- Debasis Ghosh and Chapal Kumar Das, presented a poster on 'Graphene decorated with Ag deposited Ni(OH)2: smart electrode material for supercapacitor application', ICFM-2014, February 5-7, Materials Science Centre, IIT Kharagpur, India.

Others

• Reviewer of prestigious journals, e.g. Nature communication, ACS Nano, Energy storage materials, Chemical Engineering Journals, Small, ACS Applied Energy Materials, ACS Applied Material and Interfaces, Energy & Fuels, Journal of Energy Chemistry, Materials Today Energy, Journal of Materials Chemistry A, Journal of Materials Chemistry C, RSC Advances, Nano Micro letter, New Journal of Chemistry, Applied Surface Science, SN Applied Sciences, Ionics, Chem Cat Chem, and many more.

• Experience in organizing two international conferences as coordinator.

Declaration:

The above-mentioned information is correct to the best of my knowledge.

Dr. Debasis Ghosh